Small Area Estimation Via M- Quantile Geographically Weighted Regression

نویسندگان

  • N. Salvati
  • N. Tzavidis
چکیده

The effective use of spatial information, that is the geographic locations of population units, in a regression model-based approach to small area estimation is an important practical issue. One approach for incorporating such spatial information in a small area regression model is via Geographically Weighted Regression (GWR). In GWR the relationship between the outcome variable and the covariates is characterised by local rather than global parameters, where local is defined spatially. In this paper we investigate GWR-based small area estimation under the M-quantile modelling approach. In particular, we specify an M-quantile GWR model that is a local model for the M-quantiles of the conditional distribution of the outcome variable given the covariates. This model is then used to define a bias-robust predictor of the small area characteristic of interest that also accounts for spatial association in the data. An important spin-off from applying the M-quantile GWR small area model is that it can potentially offer more efficient synthetic estimation for out of sample areas. We demonstrate the usefulness of this framework through both model-based as well as design-based simulations, with the latter based on a realistic survey data set. The paper concludes with an illustrative application that focuses on estimation of average levels of Acid Neutralizing Capacity for lakes in the north-east of the USA. Small Area Estimation Via M-quantile Geographically Weighted

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bagging Binary and Quantile Predictors for Time Series: Further Issues

Bagging (bootstrap aggregating) is a smoothing method to improve predictive ability under the presence of parameter estimation uncertainty and model uncertainty. In Lee and Yang (2006), we examined how (equal-weighted and BMA-weighted) bagging works for onestep ahead binary prediction with an asymmetric cost function for time series, where we considered simple cases with particular choices of a...

متن کامل

Nonparametric Small Area Estimation via M-quantile Regression using Penalized Splines

The demand of reliable statistics for small areas, when only reduced sizes of the samples are available, has promoted the development of small area estimation methods. In particular, an approach that is now widely used is based on linear mixed models. Chambers & Tzavidis (2006) have recently proposed an approach for small area estimation that is based on M-quantile models. However, when the fun...

متن کامل

M-quantile Models for Small Area Estimation

Small area estimation techniques are employed when sample data are insufficient for acceptably precise direct estimation in domains of interest. These techniques typically rely on regression models that use both covariates and random effects to explain variation between domains. However, such models also depend on strong distributional assumptions, require a formal specification of the random p...

متن کامل

Locally Weighted Censored Quantile Regression

Censored quantile regression offers a valuable supplement to Cox proportional hazards model for survival analysis. Existing work in the literature often requires stringent assumptions, such as unconditional independence of the survival time and the censoring variable or global linearity at all quantile levels. Moreover, some of the work use recursive algorithms making it challenging to derive a...

متن کامل

Comparison of the Performance of Geographically Weighted Regression and Ordinary Least Squares for modeling of Sea surface temperature in Oman Sea

In Marine discussions, the study of sea surface temperature (SST) and study of its spatial relationships with other ocean parameters are of particular importance, in such a way that the accurate recognition of the SST relationships with other parameters allows the study of many ocean and atmospheric processes. Therefore, in this study, spatial relations modeling of SST with Surface Wind Speed (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010